ارزیابی روش غیرپارامتریک k- نزدیکترین همسایه و سیستمهای شبکه عصبی مصنوعی برای برآورد هدایت هیدرولیکی اشباع خاک
Authors
Abstract:
هدایت هیدرولیکی اشباع خاک از مهم ترین ویژگی های فیزیکی خاک است لیکن در بیشتر موارد به علت محدودیتهای عملی و یا هزینهای، اندازهگیری آن با دشواری همراه است. در این پژوهش مدلهای مختلف شبکه های عصبی مصنوعی با نوعی از الگوریتمهای غیرپارامتریک از نوع یادگیرندههای تنبل موسوم به k-نزدیکترین همسایه، برای تخمین هدایت هیدرولیکی اشباع خاک از روی دادههای سهلالوصول خاک، مورد مقایسه قرار گرفت. در این تحقیق 151 نمونه از خاکهای زراعی اطراف بجنورد، انتخاب و متغیرهای کمکی شامل فراوانی ذرات، جرم مخصوص حقیقی و ظاهری همچنین هدایت الکتریکی عصارة اشباع خاک (ECe)، درصد مواد آلی خاک (OM)، رطوبت اشباع خاک (θs)، و میزان مواد خنثی شونده آن (TNV) جهت برآورد هدایت هیدرولیکی اشباع به کار گرفته شد. استفاده از پارامترهای آماری نشان داد که از لحاظ دقت برآورد، روش شبکه عصبی مصنوعی در مقایسه با روش غیر پارامتریک k-نزدیکترین همسایه در شرایط ارائه تمامی پارامترها (با داشتن آمارههای 97/0=r،946/0=EF، 798/8=RMSE، 446/28= MEو 134/0- =CRM) نسبت به سایر روشها و مدلهای ورودی از دقت قابل قبولی برخوردار می باشد و می تواند به عنوان روشی جایگزین برای اشتقاق توابع انتقالی خاک، بهویژه هنگامی که فراهمی دادههای جدید، نیاز به اشتقاق مجدد این توابع را الزامآور میکند، به کار رود.
similar resources
مقایسه روش های زمین آماری با روش غیرپارامتریک - k نزدیک ترین همسایه برای برآورد هدایت هیدرولیکی اشباع خاک
full text
استفاده از شبکه های عصبی مصنوعی برای برآورد هدایت هیدرولیکی اشباع از ویژگی های زودیافت خاک
full text
ارزیابی مدلهای رگرسیونی و شبکه عصبی مصنوعی در تخمین هدایت هیدرولیکی اشباع خاک در مازندران
هدایت هیدرولیکی اشباع یکی از خصوصیات مهم هیدرولیکی در علوم مرتبط با آب، خاک و کشاورزی میباشد که در مدلسازی حرکت املاح و آب در خاک بسیار اهمیت دارد.اندازهگیری آزمایشگاهی و صحرایی آن دشوار، وقتگیر و پرهزینه بوده و امکان شناسایی تغییرپذیری مکانی و زمانی آن در مقیاس وسیع عملا وجود ندارد.امروزه با استفاده از روشهای غیرمستقیم مانند توابع انتقالی میتوان آن را با دقت بالایی برآورد نمود. پژوهش حاضر...
full textارزیابی روش نفوذ بیرکن در برآورد هدایت هیدرولیکی اشباع خاک
هدایت هیدرولیکی اشباع خاک در شرایط مزرعه بسیار متغیر میباشد. بنابراین، تحلیل و شبیه سازی فرآیندهای هیدرولوژیکی مثل روانآب حاصل از باران نیاز به تعداد زیادی داده هدایت هیدرولیکی اشباع خاک حتی در مقیاس کوچک دارد. در این تحقیق، هشت روش اندازهگیری هدایت هیدرولیکی اشباع شامل: استوانههای مضاعف، دیسک مکشی، گلف، تک استوانه، بیرکن (بر اساس شیب)، بیرکن (بر اساس عرض از مبدأ)، وو1 و وو2 برای ارزیا...
full textکاربرد شبکه عصبی مصنوعی در پیشبینی هدایت هیدرولیکی اشباع با استفاده از پارامترهای فیزیکی خاک
ویژگیهای هیدرولیکی خاک همچون هدایت هیدرولیکی اشباع و غیراشباع در مطالعات زیست محیطی نقش مهمی را ایفا مینمایند. از آنجائیکه اندازهگیری مستقیم این قبیل ویژگیهای هیدرولیکی خاک امری وقتگیر و هزینهبر است روشهای غیرمستقیمی چون توابع انتقالی و شبکههای عصبی مصنوعی بر مبنای پارامترهای سهل الوصول خاک توسعه یافتهاند. در این خصوص در این مطالعه، از شبکه عصبی مصنوعی به منظور تخمین هدایت هیدرولیک...
full textمقایسه روشهای شبکه عصبی مصنوعی و رگرسیونی برای پیشبینی هدایت هیدرولیکی اشباع خاکهای استان خوزستان
Direct measurement of soil hydraulic characteristics is costly and time-consuming. Also, the method is partly unreliable due to soil heterogeneity and laboratory errors. Instead, soil hydraulic characteristics can be predicted using readily available data such as soil texture and bulk density using pedotransfer functions (PTFs). Artificial neural networks (ANNs) and statistical regression are t...
full textMy Resources
Journal title
volume 5 issue 3
pages 81- 95
publication date 2016-02-20
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023